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ABSTRACT

A relation between the theory of multiple Fourier series and partial differential
equations was divulged in the beginning of the nineteenth century and it is known as
spectral theory of the differential operators. The spectral theory of the differential
operators is a significant part of mathematical sciences and it has applications in many
branches of engineering. The development of the spectral theory of the differential
operator is started since the time when Fourier studied heat conduction problem in a
rod and the solution is found as a form of sin series. To adjust the obtained solution
leads to study of the problems of the convergence of that series solutions and it
depends on the initial and/or boundary data. Obtained series solutions of the problems
may not be convergent. Then the problem of summability will occur. Regularization
of the divergent series solution is accurate numerical interpretations of the solutions of
the problems. In this research, to find the equiconvergence of the spectral expansions
and to find the solution of the heat and wave problem regularization was required. In
the first phase, we studied a special elliptic partial sum of order 2(m+1) of multiple
Fourier series and integral in the spaces of singular distributions. We discussed the
equiconvergence in summation of the Fourier series and integral of the linear
continuous functional for specific conditions in the Lioville space. Therefore, we
proved a precise equiconvergence relation between index of the Bochner-Riesz means
of the expansions and power of the singularity of the distributions with compact
support in summation associated with the elliptic operator. After that, we studied the
vibration problem made of thin elastic membrane stretched tightly over a square
frame. The deflection of the membrane during the motion is small compared to the
size of the membrane. And for heat transfer problems the plate is made of some
thermally conductive material. We discussed different types of heat transfer problems
such as, steady state heat transfer problem, heat transfer insulated plate problems.
Solution of wave and the heat transfer problems are subjected to the boundary
conditions and initial conditions and had a form of double Fourier series. The
coefficient of the Fourier series found from the initial conditions. Convergence of the
corresponding Fourier series depends on smoothness or singularity of initial
conditions. In our case, initial conditions were the Dirac delta function and it diverges.
Thus for the solutions of the corresponding heat and wave problems some
regularizations of the Fourier series solutions are required. Here, based on the
singularity we considered the Reisz method of summation as regularization of the
Fourier series solutions of the heat and wave problems. When we increased the order
of the Reisz means, the solutions were convergence but the numerical calculations
were increased. So, to minimize the calculations of the regularized Fourier series
solutions, we optimized the regularization of the solutions of the plate vibration and
heat transfer problems. For optimization of the regularized Fourier series solutions, we
took minimum order of the Reisz means. The minimum order was s > (N - 1)/2 — L.
After optimization, we used a numerical computing programming (MAT LAB) for the
numerical solutions. Here, we found the optimization of the regularization of the
series solutions at a fixed point of the plates at initial time and critical index. After
critical point we achieved the good convergence.
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CHAPTER ONE

INTRODUCTION

1.1 SOME BASIC NOTATION
Let us denote by R" an N-dimensional Euclidean space and denote its points by

x=(x, X, ... xy) where x,, i=1,2,....N are real numbers. Let r is a positive number.
The set of points xe R" satisfying the inequality|x—x0|<r is defined as open sphere of
radious r with its centre at the point x,. The open sphere is denoted by U(x,;r). By
U,=U(0;r) denotes this sphere of radious » centred on the origin. The point x,is said

to be an interior point of a set E if there is a sphere U(x,;7) contained in this set. If all

the points of a set £ are interior then it is called an open set. If any two points of a set
Ecan be joined through an unbroken line lying in this set then the set is called

connected. A connected open set is called domain. In this thesis we denote domain by

Q. If the point x, is not an interior point and U(x,;r)NQ # ¢ for any r > 0 then it is

called point of boundary. Set of all point of boundary is denoted by 0Q2. A connected

open subset is called bounded domain.

1.1.1 C*(RY), C7(RY)- Classes
The N - dimensional vector a= (&,,,,.....a,)with non negative integer

components is called multi index and |a| =a,+a, +....+a,is called length of the



2

.. . v N
multiindex. We also use the notation x* =(x,",x,”....x,”), wherexeR" and

a, a ay ]- a . . . .
D* =(D"",D,™.....D"") , where D, = Py (7 is the imaginary unit).
' i Ox;

J
Let f(x)is a function defined in R". By D“ f(x) we denote following partial

derivative of the function f'(x)

D'f(x)=f(x)

D f(x) = e

A set of (complex) functions f which is continuous together with the derivatives

D” f(x) forall «, where |a|£ p(0<p <o, pis a non negative integer number) forms
a class of functions C”(R") in R". The space of all infinitely differentiable functions
on R"is denoted by the symbol C*(R").

Let peC(R"). The closure of the set of those points for which ¢(x)#0is
defined as the support of the continuous function ¢. It is denoted by supp ¢. The
function ¢ is said to have compact support if supp ¢ is bounded set. The subset of
C”(R") which contains the functions C*(R") with compact support in R" is

denoted by C;'(R").

1.1.2 Linear Topological Space
A set E is defined as a linear topological space if E is a linear space and also a
topological space and the operations of addition and multiplication of elements of E

by real (complex) numbers are continuous with respect to the topology in E such that



a. If zy=x,+y,, then for any neighbourhood U at the point z,, there are
neighbourhoods V" and W of the points x, and y,such that x+ yeU whenever
xeV,yeWw,

b. If a,x,=y,, then for any neighbourhood U of the point y,, there is a

neighbourhood V" of the point x, and for any number ¢>0such that o xeU

wheneverxeV/, a—a0|<g.
A mapping f:E— Ris called real valued functional. Instead of R if we take C then it

is called complex valued functional.

A functional f defined on a linear topological space E is called linear if

flax+py)=a f()+p ()

complex.
for all x, yeFE and for all numbers «,f .
Similarly, a functional f'defined on a linear topological space E is called continuous at

the point x, € E'if for any £>0, there is a neighbourhood U of x, such that

f(0)=f (x| <e

for all xeU . The functional fis said to be continuous on E if it is continuous at every
point x, k.

The linear topological space E is called the space of test elements. The set of all linear

topological space is called the space of distributions. It is denoted by E'.



1.2 FUNCTIONAL SPACES
1.2.1 The Spaces of Test Functions

Let us consider the set of test functions ® = D(R") all the infinitely differentiable
functions in R" with compact support. The convergence in D is defined as follow:
the sequence of functions ¢,,@,,... from D converges to the function ¢ belonging to
D if

1. there is a number r> 0 such thatsupp ¢, cU,, k=1,2,3,....

2. foreach a=(a,a,....ay),

xeR"

D%p,(x) = D" ¢p(x), k—> .

So, we shall write ¢, - @ as k—> o inD.

Evidently ® is a linear space. The operation of differentiation D? ¢ (x) is continuous
from D into ®. Now, from the definition of convergence in © it is clear that if
@, > @ as k—>o inD, then DPp, - DPpas k- inD.

The set of test functions, the supports of which are contained in the given domain Q,

is denoted by D({)) and we can write
D) c DRY) =D

The following example of a test function different from a zero function is called the

“hat function”.



G
C, exp(- ), x| <¢

o (0)=1 6 =’ | :
0, |x|>g

We shall choose a constant C . suct that
j o (x)dx=1,

that is

2
Cg_[exp ) dx=1.

2 2
¢* =

Let us consider the set of test functions J = J(RM) belonging to the class

C”(R") which decreases as |x|—>00, together with all their derivatives and faster than
any power of |x| “!. Therefore, the sequence of functions ¢,, @,,... which is belongs to

J converges to the functions ¢ € J, ¢, =& @pas k > in J, if

xeRY

x"D%p, (x) = x"D* p(x), k — oo (1.1)

for all & and £ and for the continuous function ¢(x) at the point x.

Obviously J is a linear space. Moreover, © C J and the convergence in J follows
from the convergence in D.

If ¢, > @ as k—oinD then since the supports of ¢, are bounded independently
of k then the limiting result (1.1) is valid for all ¢ and £, that’s mean ¢, — ¢ as

k—> o inJ. Though, J does not coincide with ®. As an example, the function

J(x) = exp (—|x| ?) which belongs to J but it does not belong to D.



