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ABSTRACT

The aerospace industry is increasing its utilization of composite-made structures for
safety and efficiency reasons but what comes with that is a phenomenon called spring-
back which is defined as the deviation of the finished part from the intended design.
Thus, there is a critical need for a reliable method to prevent and correct the spring-back
problem. The present work employs Finite Element Analysis (FEA) to predict the
spring-back behavior of composite structures by modelling the stretching of the first ply
of the laminate and integrating it with an interface component between the laminate part
and tool. The research study is conducted in 3 phases with pre-impregnated laminates.
The first phase is for flat laminates of various sizes and thicknesses. A good agreement
was obtained between the FEA simulation results and the experimental data,
particularly for the smaller and thinner samples. The predominant mechanism that
contributed to the spring-back warpage is found to be the in-plane stress from the ply
stretching. The second phase is for curved laminates with the critical parameters
identified in the flat phase being maintained with an added mechanism referred to as
the Corner Effect. It was discovered that the warpage is due to the in-plane stress
contributed predominantly by the corner stretching. The remainder is due to the tool-
laminate interface and it has been shown that its properties are independent of the
laminate geometry. The third and final phase is to study the effect of angled plies on
spring-back behavior. The experimental results showed that the inclusion of angled
plies in the laminate significantly raises the severity of the spring-back warpage and
that orientation of the deformation is largely aligned by the fiber orientation of the first
ply which reinforces the hypothesis from the first phase and overall research. Finally,
the scope of the current research study only concerns with predicting the spring-back
behavior but as an extension for future study, the author recommends future works
focusing more on correcting the spring-back deformation via tool modification by
establishing yet again both an experimental and simulation base for validating the FEA
model produced in the current study for all 3 phases.
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Figure 3.15 Evolution of the normalized (average maximum warpage over the
warpage for 500 x 500 mm?) for unidirectional flat IMA/M21E
laminates

Figure 3.16 Measurement points on the deformed sample for a curved
unidirectional laminate

Figure 3.17 Average spring-in warpage deformation for unidirectional curved
IMA/M21E manufactured on various corner angles
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Figure 3.18 Evolution of the normalized average maximum warpage for curved
unidirectional IMA/M21E laminates in function of the corner
angle

Figure 3.19 Dispersed measurement points on a symmetrical flat laminate
sample seen at top view (left) and isometric view (right)

Figure 3.20 Evolution average maximum warpage for symmetrical flat
IMA/M21E laminates in function of the lay-up configurations

Figure 4.1 Flowchart of the research methodology for predicting the spring-
back deformation for flat unidirectional laminates

Figure 4.2 FEA model construction (cross-sectional view)

Figure 4.3 FEA model construction for flat unidirectional sample (isometric
view)

Figure 4.4 Out-of-plane shear stress law behavior of the interface component

Figure 4.5 Out-of-plane shear stress distribution in function of varying FEA
runtime

Figure 4.6 Evolution of the maximum warpage in function of the mesh size

Figure 4.7 Flowchart for determining the parameters for predicting the spring-
back deformation for flat unidirectional laminates

Figure 4.8 Spring-back warpage design chart for a unidirectional 300 x 300
mm? and 4 plies configuration

Figure 4.9 Coefficient of determination between the experimental averaged
measures and numerical results along the longitudinal direction
with a fixed out-of-plane shear stress failure, txz failure = 3.8 MPa

Figure 4.10 Coefficient of determination between the experimental averaged
measures and numerical results along the transversal direction
with a fixed out-of-plane shear stress failure, txz failure = 3.8 MPa

Figure 4.11 Evolution of the normalized longitudinal coefficient of thermal
expansion of the first ply for unidirectional flat IMA/M21E
laminates in function of the part thickness

Figure 4.12 Evolution of the normalized longitudinal coefficient of thermal
expansion of the first ply for unidirectional flat IMA/M21E
laminates in function of the part size

Figure 4.13 Comparison of the average maximum warpage between the
experimental and FEA simulation results for the unidirectional
flat and 300 x 300 mm? IMA/M21E laminates
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Figure 4.14 Comparison of the average maximum warpage between the
experimental and FEA simulation results for the unidirectional
flat and 400 x 400 mm? IMA/M21E laminates

Figure 4.15 Comparison of the average maximum warpage between the
experimental and FEA simulation results for the unidirectional
flat and 500 x 500 mm? IMA/M21E laminates

Figure 4.16 Comparison of the spring-back warpage orientation between the
experimental and FEA simulation results for the unidirectional
flat laminates

Figure 4.17 Flowchart of the research methodology for predicting the spring-
back deformation for curved unidirectional laminates

Figure 4.18 FEA model construction for curved unidirectional sample
(isometric view)

Figure 4.19 Flowchart of the FEA modelling approach for unidirectional
curved laminate samples

Figure 4.20 The corner arc section (in green) and flange section (in grey) of
the curved unidirectional 500x500 mm? and 4 plies IMA/M21E
laminate

Figure 4.21 Comparison of the average maximum warpage between the
experimental and FEA simulation results for the unidirectional
curved IMA/M21E laminates (baseline condition)

Figure 4.22 FEA simulation representation (left) to the actual manufactured
sample for the unidirectional curved laminates (30°)

Figure 4.23 Measurement points on the flange and corner sections of the
curved unidirectional laminate

Figure 4.24 Decrease of the longitudinal Young’s modulus of the flange
section to the Young’s modulus of the corner section in function
of the corner angle for the laminate configuration 500x500 mm?
and 4 plies thickness

Figure 4.25 Comparison of the average maximum warpage between the
experimental and FEA simulation results for the unidirectional
curved IMA/M21E laminates (with modified Young’s modulus)

Figure 4.26 Increase of the longitudinal coefficient of thermal expansion of the
corner section to the longitudinal coefficient of thermal
expansion of the flange section in function of the corner angle for
the laminate configuration 500x500 mm? and 4 plies thickness

Figure 4.27 Comparison of the average maximum warpage between the
experimental and FEA simulation results for the unidirectional
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curved IMA/M21E laminates (with longitudinal coefficient of
thermal expansion at the corner section)

Figure 4.28 Flowchart of the research methodology for predicting the spring-
back deformation for flat symmetrical laminates

Figure 4.29 FEA model construction for curved unidirectional sample
(isometric view)

Figure 4.30 Comparison of the average maximum warpage between the
experimental and FEA simulation results for the unidirectional
curved IMA/M21E laminates

Figure 4.31 Comparison of the spring-back warpage orientation between the
experimental and FEA simulation results for the symmetrical flat
laminates

Figure 4.32 Evolution of the maximum warpage in function of the mesh size
for flat symmetrical laminates

Figure 5.1 Progression of the interfacial shear stress distribution from the tool
end to the center for (a) the previous research study obtained by
Twigg et al., (2003) and (b) the current research study for
300x300 mm? and 4 plies

Figure 5.2 Distribution of the in-plane stress through the thickness of the
laminate for (a) the previous research study obtained by Twigg
etal., (2003) and (b) the current research study for 300x300 mm?
and 4 plies

Figure 5.3 Evolution of the normalized longitudinal coefficient of thermal
expansion of the first ply for unidirectional flat IMA/M21E
laminates in function of the part thickness (included for 300 x
300 mm?and 6 plies)

Figure 5.4 Evolution of the normalized longitudinal coefficient of thermal
expansion of the first ply for unidirectional flat IMA/M21E
laminates in function of the part size (included for 4 plies, 350 x
350 mm?and 450 x 450 mm?)

Figure 5.5 Comparison of the average maximum warpage between the
experimental and FEA simulation results for the unidirectional
flat IMA/M21E laminates

Figure 5.6 Evolution of failure temperature of the interface in function of the
part thickness

Figure 5.7 Evolution of failure temperature of the interface in function of the
part size
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Figure 5.8 Distribution of the out-of-plane shear stress at the tool-part interface

along the longitudinal direction at various temperatures and at
the transversal position (a) y = 150 mm; (b) y =75 mm and (c) y
=0 mm (300x300 mm? and 4 plies)

Figure 5.9 Distribution of the out-of-plane shear stress at the tool-part interface
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along the longitudinal direction at various temperatures and at
the transversal position (a) y = 150 mm; (b) y =75 mm and (c) y
=0 mm (300x300 mm? and 8 plies)

Distribution of the out-of-plane shear stress at the tool-part
interface along the longitudinal direction at various temperatures
and at the transversal position (a) y = 150 mm; (b) y = 75 mm
and (c) y = 0 mm (300x300 mm? and 16 plies)

Distribution of the out-of-plane shear stress at the tool-part
interface along the longitudinal direction at various temperatures
and at the transversal position (a) y = 200 mm; (b) y = 100 mm
and (c) y = 0 mm (400x400 mm? and 4 plies)

Distribution of the out-of-plane shear stress at the tool-part
interface along the longitudinal direction at various temperatures
and at the transversal position (a) y = 200 mm; (b) y = 100 mm
and (c) y = 0 mm (400x400 mm? and 8 plies)

Distribution of the out-of-plane shear stress at the tool-part
interface along the longitudinal direction at various temperatures
and at the transversal position (a) y = 200 mm; (b) y = 100 mm
and (c) y = 0 mm (400x400 mm? and 16 plies)

Distribution of the out-of-plane shear stress at the tool-part
interface along the longitudinal direction at various temperatures
and at the transversal position (a) y = 250 mm; (b) y = 125 mm
and (c) y = 0 mm (500x500 mm? and 4 plies)

Distribution of the out-of-plane shear stress at the tool-part
interface along the longitudinal direction at various temperatures
and at the transversal position (a) y = 250 mm; (b) y = 125 mm
and (c) y = 0 mm (500x500 mm? and 8 plies)

Distribution of the out-of-plane shear stress at the tool-part
interface along the longitudinal direction at various temperatures
and at the transversal position (a) y = 250 mm; (b) y = 125 mm
and (c) y = 0 mm (500x500 mm? and 16 plies)

Figure 5.17 Evolution of the interface failure in function of the temperature

(300x300 mm? and 4 plies)

Figure 5.18 Evolution of the interface failure in function of the temperature

(300x300 mm? and 8 plies)
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Figure 5.19 Evolution of the interface failure in function of the temperature
(300x300 mm? and 16 plies)

Figure 5.20 Evolution of the interface failure in function of the temperature
(400x400 mm? and 4 plies)

Figure 5.21 Evolution of the interface failure in function of the temperature
(400x400 mm? and 8 plies)

Figure 5.22 Evolution of the interface failure in function of the temperature
(400x400 mm? and 16 plies)

Figure 5.23 Evolution of the interface failure in function of the temperature
(500x500 mm? and 4 plies)

Figure 5.24 Evolution of the interface failure in function of the temperature
(500x500 mm? and 8 plies)

Figure 5.25 Evolution of the interface failure in function of the temperature
(500x500 mm? and 16 plies)

Figure 5.26 Distribution of the in-plane stress through the thickness of the
300x300 mm? unidirectional flat IMA/M21E laminates

Figure 5.27 Distribution of the in-plane stress through the thickness of the
400x400 mm? unidirectional flat IMA/M21E laminates

Figure 5.28 Distribution of the in-plane stress through the thickness of the
500x500 mm? unidirectional flat IMA/M21E laminates

Figure 5.29 C-shaped geometry angled at 90° of the tested laminate part (Albert
etal., 2002)

Figure 5.30 FEA models of the laminate part geometries for 45° (left) and
90°(right)

Figure 5.31 Evolution of failure temperature of the interface in function of the
corner angle

Figure 5.32 Evolution of the interface failure in function of the temperature
(30° with longitudinal coefficient of thermal expansion at the
corner section)

Figure 5.33 Evolution of the interface failure in function of the temperature
(45° with longitudinal coefficient of thermal expansion at the
corner section)

Figure 5.34 Evolution of the interface failure in function of the temperature
(90° with longitudinal coefficient of thermal expansion at the
corner section)
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Figure 5.35 Distribution of the in-plane stress through the thickness of the
unidirectional 30° curved IMA/M21E laminates (longitudinal
coefficient of thermal expansion at the corner section)

Figure 5.36 Distribution of the in-plane stress through the thickness of the
unidirectional 45° curved IMA/M21E laminates (longitudinal
coefficient of thermal expansion at the corner section)

Figure 5.37 Distribution of the in-plane stress through the thickness of the
unidirectional 90° curved IMA/M21E laminates (longitudinal
coefficient of thermal expansion at the corner section)

Figure 5.38 Evolution of failure temperature of the interface in function of the
part lay-up

Figure 5.39 Evolution of the interface failure in function of the temperature
([45/0]s)

Figure 5.40: Evolution of the interface failure in function of the temperature
([45/-45]s)

Figure 5.41 Distribution of the in-plane stress through the thickness of the
300x300 mm? and 4 plies symmetrical flat IMA/M21E laminates
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